3.4.31 \(\int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^{5/2}} \, dx\) [331]

Optimal. Leaf size=192 \[ \frac {35 \tanh ^{-1}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{64 \sqrt {2} a^2 c^{5/2} f}+\frac {35 \cos (e+f x)}{64 a^2 c f (c-c \sin (e+f x))^{3/2}}+\frac {7 \sec (e+f x)}{24 a^2 c f (c-c \sin (e+f x))^{3/2}}-\frac {35 \sec (e+f x)}{48 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}-\frac {\sec ^3(e+f x)}{3 a^2 c^2 f \sqrt {c-c \sin (e+f x)}} \]

[Out]

35/64*cos(f*x+e)/a^2/c/f/(c-c*sin(f*x+e))^(3/2)+7/24*sec(f*x+e)/a^2/c/f/(c-c*sin(f*x+e))^(3/2)+35/128*arctanh(
1/2*cos(f*x+e)*c^(1/2)*2^(1/2)/(c-c*sin(f*x+e))^(1/2))/a^2/c^(5/2)/f*2^(1/2)-35/48*sec(f*x+e)/a^2/c^2/f/(c-c*s
in(f*x+e))^(1/2)-1/3*sec(f*x+e)^3/a^2/c^2/f/(c-c*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 192, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {2815, 2766, 2760, 2729, 2728, 212} \begin {gather*} \frac {35 \tanh ^{-1}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{64 \sqrt {2} a^2 c^{5/2} f}-\frac {\sec ^3(e+f x)}{3 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}-\frac {35 \sec (e+f x)}{48 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}+\frac {35 \cos (e+f x)}{64 a^2 c f (c-c \sin (e+f x))^{3/2}}+\frac {7 \sec (e+f x)}{24 a^2 c f (c-c \sin (e+f x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Sin[e + f*x])^2*(c - c*Sin[e + f*x])^(5/2)),x]

[Out]

(35*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])])/(64*Sqrt[2]*a^2*c^(5/2)*f) + (35*Cos[e
 + f*x])/(64*a^2*c*f*(c - c*Sin[e + f*x])^(3/2)) + (7*Sec[e + f*x])/(24*a^2*c*f*(c - c*Sin[e + f*x])^(3/2)) -
(35*Sec[e + f*x])/(48*a^2*c^2*f*Sqrt[c - c*Sin[e + f*x]]) - Sec[e + f*x]^3/(3*a^2*c^2*f*Sqrt[c - c*Sin[e + f*x
]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2729

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c + d*x]*((a + b*Sin[c + d*x])^n/(a*d
*(2*n + 1))), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2760

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(2*m + p + 1))), x] + Dist[(m + p + 1)/(a*(2*m + p + 1)),
Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^
2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] && IntegersQ[2*m, 2*p]

Rule 2766

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(-b)*((
g*Cos[e + f*x])^(p + 1)/(a*f*g*(p + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[a*((2*p + 1)/(2*g^2*(p + 1))), In
t[(g*Cos[e + f*x])^(p + 2)/(a + b*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0
] && LtQ[p, -1] && IntegerQ[2*p]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps

\begin {align*} \int \frac {1}{(a+a \sin (e+f x))^2 (c-c \sin (e+f x))^{5/2}} \, dx &=\frac {\int \frac {\sec ^4(e+f x)}{\sqrt {c-c \sin (e+f x)}} \, dx}{a^2 c^2}\\ &=-\frac {\sec ^3(e+f x)}{3 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}+\frac {7 \int \frac {\sec ^2(e+f x)}{(c-c \sin (e+f x))^{3/2}} \, dx}{6 a^2 c}\\ &=\frac {7 \sec (e+f x)}{24 a^2 c f (c-c \sin (e+f x))^{3/2}}-\frac {\sec ^3(e+f x)}{3 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}+\frac {35 \int \frac {\sec ^2(e+f x)}{\sqrt {c-c \sin (e+f x)}} \, dx}{48 a^2 c^2}\\ &=\frac {7 \sec (e+f x)}{24 a^2 c f (c-c \sin (e+f x))^{3/2}}-\frac {35 \sec (e+f x)}{48 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}-\frac {\sec ^3(e+f x)}{3 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}+\frac {35 \int \frac {1}{(c-c \sin (e+f x))^{3/2}} \, dx}{32 a^2 c}\\ &=\frac {35 \cos (e+f x)}{64 a^2 c f (c-c \sin (e+f x))^{3/2}}+\frac {7 \sec (e+f x)}{24 a^2 c f (c-c \sin (e+f x))^{3/2}}-\frac {35 \sec (e+f x)}{48 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}-\frac {\sec ^3(e+f x)}{3 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}+\frac {35 \int \frac {1}{\sqrt {c-c \sin (e+f x)}} \, dx}{128 a^2 c^2}\\ &=\frac {35 \cos (e+f x)}{64 a^2 c f (c-c \sin (e+f x))^{3/2}}+\frac {7 \sec (e+f x)}{24 a^2 c f (c-c \sin (e+f x))^{3/2}}-\frac {35 \sec (e+f x)}{48 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}-\frac {\sec ^3(e+f x)}{3 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}-\frac {35 \text {Subst}\left (\int \frac {1}{2 c-x^2} \, dx,x,-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{64 a^2 c^2 f}\\ &=\frac {35 \tanh ^{-1}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{64 \sqrt {2} a^2 c^{5/2} f}+\frac {35 \cos (e+f x)}{64 a^2 c f (c-c \sin (e+f x))^{3/2}}+\frac {7 \sec (e+f x)}{24 a^2 c f (c-c \sin (e+f x))^{3/2}}-\frac {35 \sec (e+f x)}{48 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}-\frac {\sec ^3(e+f x)}{3 a^2 c^2 f \sqrt {c-c \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.73, size = 156, normalized size = 0.81 \begin {gather*} -\frac {\left (\frac {1}{1536}+\frac {i}{1536}\right ) \sec ^3(e+f x) \left (840 \sqrt [4]{-1} \tan ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt [4]{-1} \left (1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^4 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3+(1-i) (102+70 \cos (2 (e+f x))-329 \sin (e+f x)-105 \sin (3 (e+f x)))\right )}{a^2 c^2 f \sqrt {c-c \sin (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Sin[e + f*x])^2*(c - c*Sin[e + f*x])^(5/2)),x]

[Out]

((-1/1536 - I/1536)*Sec[e + f*x]^3*(840*(-1)^(1/4)*ArcTan[(1/2 + I/2)*(-1)^(1/4)*(1 + Tan[(e + f*x)/4])]*(Cos[
(e + f*x)/2] - Sin[(e + f*x)/2])^4*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3 + (1 - I)*(102 + 70*Cos[2*(e + f*x)
] - 329*Sin[e + f*x] - 105*Sin[3*(e + f*x)])))/(a^2*c^2*f*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [A]
time = 3.06, size = 233, normalized size = 1.21

method result size
default \(-\frac {105 \left (c \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}} \sqrt {2}\, \arctanh \left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \left (\sin ^{2}\left (f x +e \right )\right ) c^{2}+70 c^{\frac {7}{2}} \left (\sin ^{2}\left (f x +e \right )\right )-210 c^{\frac {7}{2}} \left (\sin ^{3}\left (f x +e \right )\right )-210 \left (c \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}} \sqrt {2}\, \arctanh \left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sin \left (f x +e \right ) c^{2}+322 c^{\frac {7}{2}} \sin \left (f x +e \right )+105 \sqrt {2}\, \arctanh \left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2} \left (c \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}}-86 c^{\frac {7}{2}}}{384 c^{\frac {11}{2}} a^{2} \left (1+\sin \left (f x +e \right )\right ) \left (\sin \left (f x +e \right )-1\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(233\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/384/c^(11/2)/a^2*(105*(c*(1+sin(f*x+e)))^(3/2)*2^(1/2)*arctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2)
)*sin(f*x+e)^2*c^2+70*c^(7/2)*sin(f*x+e)^2-210*c^(7/2)*sin(f*x+e)^3-210*(c*(1+sin(f*x+e)))^(3/2)*2^(1/2)*arcta
nh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2))*sin(f*x+e)*c^2+322*c^(7/2)*sin(f*x+e)+105*2^(1/2)*arctanh(1/2
*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2)/c^(1/2))*c^2*(c*(1+sin(f*x+e)))^(3/2)-86*c^(7/2))/(1+sin(f*x+e))/(sin(f*x+e)
-1)/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((a*sin(f*x + e) + a)^2*(-c*sin(f*x + e) + c)^(5/2)), x)

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 262, normalized size = 1.36 \begin {gather*} \frac {105 \, \sqrt {2} {\left (\cos \left (f x + e\right )^{3} \sin \left (f x + e\right ) - \cos \left (f x + e\right )^{3}\right )} \sqrt {c} \log \left (-\frac {c \cos \left (f x + e\right )^{2} + 2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} \sqrt {c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) + {\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) + 4 \, {\left (35 \, \cos \left (f x + e\right )^{2} - 7 \, {\left (15 \, \cos \left (f x + e\right )^{2} + 8\right )} \sin \left (f x + e\right ) + 8\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{768 \, {\left (a^{2} c^{3} f \cos \left (f x + e\right )^{3} \sin \left (f x + e\right ) - a^{2} c^{3} f \cos \left (f x + e\right )^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

1/768*(105*sqrt(2)*(cos(f*x + e)^3*sin(f*x + e) - cos(f*x + e)^3)*sqrt(c)*log(-(c*cos(f*x + e)^2 + 2*sqrt(2)*s
qrt(-c*sin(f*x + e) + c)*sqrt(c)*(cos(f*x + e) + sin(f*x + e) + 1) + 3*c*cos(f*x + e) + (c*cos(f*x + e) - 2*c)
*sin(f*x + e) + 2*c)/(cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) + 4*(35*cos(f*x +
e)^2 - 7*(15*cos(f*x + e)^2 + 8)*sin(f*x + e) + 8)*sqrt(-c*sin(f*x + e) + c))/(a^2*c^3*f*cos(f*x + e)^3*sin(f*
x + e) - a^2*c^3*f*cos(f*x + e)^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {1}{c^{2} \sqrt {- c \sin {\left (e + f x \right )} + c} \sin ^{4}{\left (e + f x \right )} - 2 c^{2} \sqrt {- c \sin {\left (e + f x \right )} + c} \sin ^{2}{\left (e + f x \right )} + c^{2} \sqrt {- c \sin {\left (e + f x \right )} + c}}\, dx}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))**2/(c-c*sin(f*x+e))**(5/2),x)

[Out]

Integral(1/(c**2*sqrt(-c*sin(e + f*x) + c)*sin(e + f*x)**4 - 2*c**2*sqrt(-c*sin(e + f*x) + c)*sin(e + f*x)**2
+ c**2*sqrt(-c*sin(e + f*x) + c)), x)/a**2

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 480 vs. \(2 (175) = 350\).
time = 0.54, size = 480, normalized size = 2.50 \begin {gather*} \frac {\frac {420 \, \sqrt {2} \log \left (-\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1}\right )}{a^{2} c^{\frac {5}{2}} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {3 \, \sqrt {2} {\left (\sqrt {c} - \frac {24 \, \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + \frac {210 \, \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}{a^{2} c^{3} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {256 \, \sqrt {2} {\left (5 \, \sqrt {c} + \frac {9 \, \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + \frac {6 \, \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}\right )}}{a^{2} c^{3} {\left (\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + 1\right )}^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {3 \, {\left (\frac {24 \, \sqrt {2} a^{2} c^{\frac {7}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} - \frac {\sqrt {2} a^{2} c^{\frac {7}{2}} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}\right )}}{a^{4} c^{6}}}{3072 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

1/3072*(420*sqrt(2)*log(-(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1))/(a^2*c^(5/
2)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) - 3*sqrt(2)*(sqrt(c) - 24*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)
/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 210*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-1/4*pi + 1/2*
f*x + 1/2*e) + 1)^2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2/(a^2*c^3*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sg
n(sin(-1/4*pi + 1/2*f*x + 1/2*e))) + 256*sqrt(2)*(5*sqrt(c) + 9*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(
cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 6*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-1/4*pi + 1/2*f*x
+ 1/2*e) + 1)^2)/(a^2*c^3*((cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 1)^3*sg
n(sin(-1/4*pi + 1/2*f*x + 1/2*e))) - 3*(24*sqrt(2)*a^2*c^(7/2)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)*sgn(sin(-1
/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) - sqrt(2)*a^2*c^(7/2)*(cos(-1/4*pi + 1/2*f*x +
1/2*e) - 1)^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2)/(a^4*c^6))/f

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + a*sin(e + f*x))^2*(c - c*sin(e + f*x))^(5/2)),x)

[Out]

int(1/((a + a*sin(e + f*x))^2*(c - c*sin(e + f*x))^(5/2)), x)

________________________________________________________________________________________